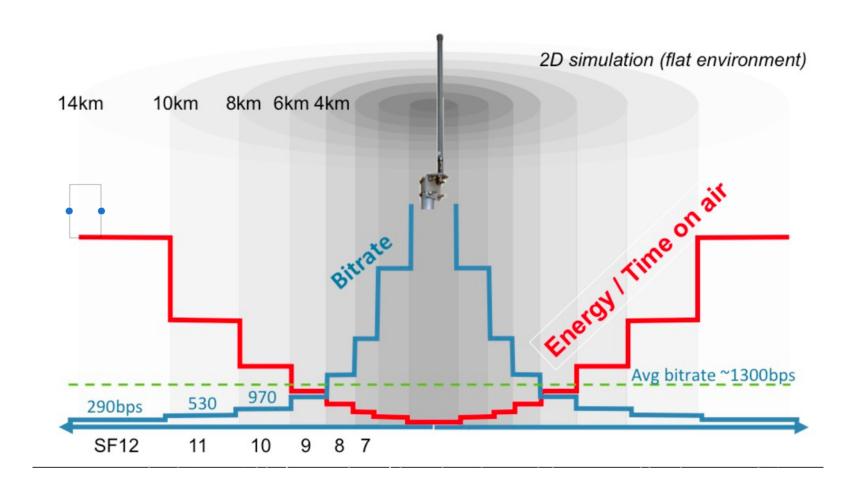


IoT networks made easy

A wonderful world around us

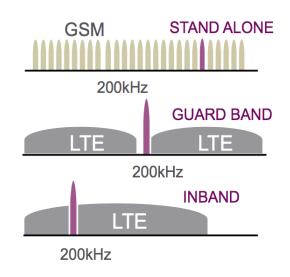


Lora fundamentals - RF

Characteristics	LoRa RF	
Modulation	LoRa (spread spectrum)	
Frequency	Sub-GHz ISM	
Channel bandwidth	125-500 KHz	
Data rate	300 bps - 50 kbps	
Gateway sensitivity	-142 dBm/300bps	
Range	10+ km, deep indoor coverage	
Payload size	11 - 242 bytes (variable)	
Battery consumption	10mA RX / 32mA (14dBm) TX 10+ year	
Communication type	Bidirectional unicast, network multicast	
Interference immunity	Spread-spectrum w/ FEC	
Scalability	Self scaling network capability through Adaptive Data Rate	
Mobility	Handover support, geo-location	

Lora fundamentals - ADR

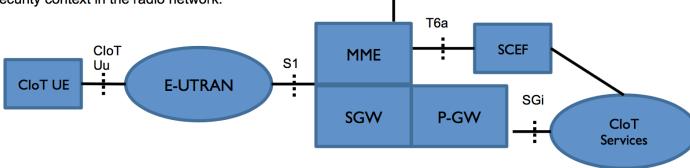
Lora fundamentals - device classes


Class name	Intended usage
A (« all »)	Battery powered sensors, or actuators with no latency constraint. Most energy efficient communication class. Downlink TX can only happen after uplink.
B (« beacon »)	Battery powered actuators Device opens receive window at scheduled slots.
C (« continuous »)	Mains powered actuators Devices which can afford to listen continuously. No latency for downlink communication.

Lora fundamentals - network structure

NB-IoT fundamentals - RF

- Targeting implementation in an existing 3GPP network
- Applicable in any 3GPP defined (licensed)
 frequency band standardization in release 13
- Three deployment modes
- Processing along with wideband LTE carriers implying OFDM secured orthogonality and common resource utilization
- Maximum user rates 30/60 (DL/UL) kbps

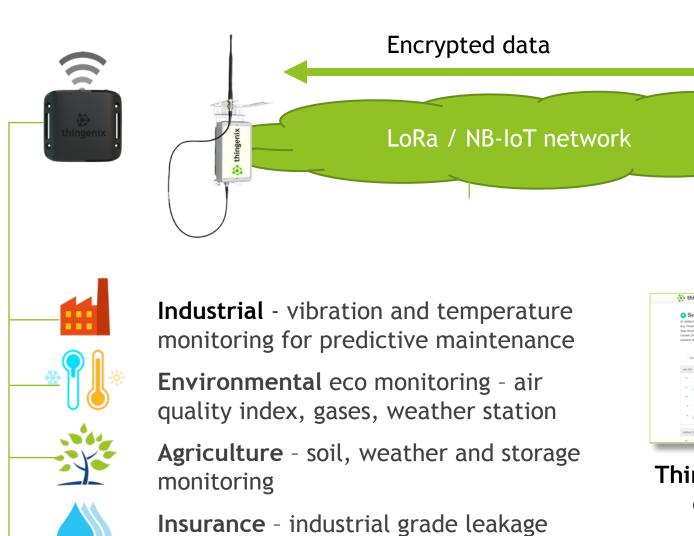

The capacity of NB-IoT carrier is shared by all devices
Capacity is scalable by adding additional NB-IoT carriers

NB-IoT fundamentals

- Highest modulation scheme QPSK
- ISM bands vs licensed bands
 - NB-IoT currently specified on licensed bands only
 - Narrowband operation (180 kHz bandwidth)
 - in-band (LTE), guard band (LTE) or standalone operation mode (e.g. refarm the GSM carrier at 850/900 MHz)
 - Half Duplex FDD operation mode with 60 kbps peak rate in uplink and 30 kbps peak rate in downlink
- Maximum transmission block size 680 bits in DL, 1000 bits in UL (In Rel-13)
- Use repetitions for coverage enhancements, up to 2048 reps in DL, 128 reps in UL data channels
- > 10 year battery life time

NB-IoT fundamentals - architecture

- Architecture is based on evolved Packet Core (EPC) used by LTE
- Cellular IoT User Equipment (CloT UE) is the mobile terminal
- evolved UMTS Terrestrial Radio Access Network (E-UTRAN) handles the radio communications between the UE and the EPC, and consists of the evolved base stations called eNodeB or eNB
- NB-IoT security properties
 - Authentication and core network signaling security as in normal LTE
 - Security supporting optimized transmission of user data
 - Encrypted and integrity protected user data can be sent within NAS signaling (no AS security for DoNAS).
 - Minimized signaling to resume cached user plane security context in the radio network.



S₆a

HSS

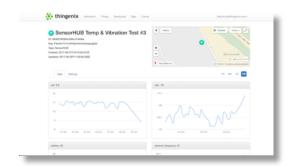
Vertical IoT solutions

detection

Thingenix platform for data and device management

....without headache!

SensorHUB: data collection made easy


- Autonomous or external power options, including solar, with long battery life
- Variety of sensors and applications
- LoRa or NB-IoT connectivity
- Powerful Cortex-M4 MCU for local data processing (fog computing)
- ▶ 4 plug and play sensors in any combination
- Easy installation, no special training required
- Industrial grade enclosure with IP65 protection

Robust and modular device - variety of applications!

Data and device management platform

- Compatible with Actility, LORIOT, TTN, Thingenix, IP/3GPP or can work on top of an existing IoT platform
- Flexible device configuration and management designed for LPWAN
- Supports any 3rd party devices
- Mobile apps in 3Q17
- Firmware over the air for LPWANs in 4Q17

Ultimate device management designed for LPWAN!

http://www.thingenix.com

info@thingenix.com

+7 495 150 3748